Directional flow sensing by passively stable larvae.

نویسندگان

  • Heidi L Fuchs
  • Adam J Christman
  • Gregory P Gerbi
  • Elias J Hunter
  • F Javier Diez
چکیده

Mollusk larvae have a stable, velum-up orientation that may influence how they sense and react to hydrodynamic signals applied in different directions. Directional sensing abilities and responses could affect how a larva interacts with anisotropic fluid motions, including those in feeding currents and in boundary layers encountered during settlement. Oyster larvae (Crassostrea virginica) were exposed to simple shear in a Couette device and to solid-body rotation in a single rotating cylinder. Both devices were operated in two different orientations, one with the axis of rotation parallel to the gravity vector, and one with the axis perpendicular. Larvae and flow were observed simultaneously with near-infrared particle-image velocimetry, and behavior was quantified as a response to strain rate, vorticity and centripetal acceleration. Only flows rotating about a horizontal axis elicited the diving response observed previously for oyster larvae in turbulence. The results provide strong evidence that the turbulence-sensing mechanism relies on gravity-detecting organs (statocysts) rather than mechanosensors (cilia). Flow sensing with statocysts sets oyster larvae apart from zooplankters such as copepods and protists that use external mechanosensors in sensing spatial velocity gradients generated by prey or predators. Sensing flow-induced changes in orientation, rather than flow deformation, would enable more efficient control of vertical movements. Statocysts provide larvae with a mechanism of maintaining their upward swimming when rotated by vortices and initiating dives toward the seabed in response to the strong turbulence associated with adult habitats.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Form, performance and trade-offs in swimming and stability of armed larvae

Diverse larval forms swim and feed with ciliary bands on arms or analogous structures. Armed morphologies are varied: numbers, lengths, and orientations of arms differ among species, change through development, and can be plastic in response to physiologicalor environmentalconditions.A hydromechanical model of idealized equal-armed larvae was used to examine functional consequences of these var...

متن کامل

Nonrandom larval dispersal can steepen marine clines.

Sharp and stable clinal variation is enigmatic when found in species with high gene flow. Classical population genetic models treat gene flow as a random homogenizing force countering local adaptation across habitat discontinuities. Under this view, dispersal over large spatial scales will lower the effectiveness of adaptation by natural selection at finer spatial scales. Thus, random gene flow...

متن کامل

Patterns of larval dispersal and their effect on the maintenance of a blue mussel hybrid zone in southwestern England.

The blue mussels Mytilus edulis and M. galloprovincialis hybridize in southwestern England. Within this hybrid zone environmentally based directional selection favors individuals with alleles specific to M. galloprovincialis. What forces are countering this directional selection and allowing for the maintenance of a stable hybrid population are unknown. We used both the genetics of recently set...

متن کامل

Factors that determine directional constraint in ipsilateral hand–foot coordinated movements

In performing simultaneous rhythmic movements of the ipsilateral hand and foot, there are differences in the level of stability between same directional (stable) and opposite directional (unstable) movements. This is the directional constraint. In this study, we investigated three factors ("interaction in efferent process," "interaction of afferent signals," and "error correction") proposed to ...

متن کامل

Distributed and Cooperative Compressive Sensing Recovery Algorithm for Wireless Sensor Networks with Bi-directional Incremental Topology

Recently, the problem of compressive sensing (CS) has attracted lots of attention in the area of signal processing. So, much of the research in this field is being carried out in this issue. One of the applications where CS could be used is wireless sensor networks (WSNs). The structure of WSNs consists of many low power wireless sensors. This requires that any improved algorithm for this appli...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of experimental biology

دوره   شماره 

صفحات  -

تاریخ انتشار 2015